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Abstract. We propose a method to simultaneously perform a symmetry adaptation and a 
labelling of the bases of the irreducible representations of the solvable finite groups. It is 
performed by defining a self-adjoint operator with eigenvalues which show the descent in 
symmetry of the irreps of the group-subgroup sequences. We also prove a theorem on the 
canonicity of the composition series of finite groups. 

1. Introduction 

Group theory is a powerful tool for the study of the physical properties of quantum 
mechanical systems. In order to exploit the symmetry properties of the systems 
effectively, it is of great importance to know how to perform an adaptation of the 
corresponding state vectors. In this paper we show that it is possible to make a 
symmetry adaptation and simultaneously a labelling of the bases of the irreducible 
representations (irreps) of the finite groups associated with physical problems. 

In § 2 we show that a composition series of a solvable group is always a canonical 
sequence, an essential requirement for the labelling to be unique. This is a highly 
desired result since the majority of the groups associated with solid state physics and 
quantum chemistry problems are solvable groups-as is the case of crystallographic 
groups, point groups, Shubnikov groups, etc. We also show that the sequences of a 
finite group which has a derived series ending with a group isomorphic to an alternating 
group are canonical series. 

The labelling of the basis functions of the head group in a sequence is performed 
in § 3, where we show that it is possible to construct a self-adjoint operator for each 
one of the sequences of the type Go 3 G, 3 .  . - 3  G,, such that the eigenvalues show 
the descent in symmetry in the chain and the corresponding eigenvectors actually may 
be taken to be the symmetry adapted bases of the irreps. 

The key to the labelling consists essentially of adopting the general Bethe convention 
for the irreps, such that we let the eigenvalues of the operator be integer numbers 
given in a convenient form to label the irreps of each group in the sequence. We also 
show in § 3 that, in order to construct the labelling operators, we only need a character 
table of the groups involved in the sequence and that the diagonalisation of a particular 
linear combination of the right and left regular representations of the labelling operator 
gives the irreps adapted to a canonical sequence. 

The extension of the method to label the bases of vector fields is analysed in § 4 
where we also propose a solution for the cubic harmonics, i.e. the labelling of the 
bases for the sequence SU(2) 3 O* 2 , .  , , 
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2. Canonical sequences 

First we recall that a group has a canonical sequence when the number of times each 
irrep of each subgroup in the sequence occurs in the restriction of the representation 
of the corresponding preceding group is either one or zero. 

We must note that we are going to deal only with canonical sequences ending with 
Abelian groups, since this is the necessary and sufficient condition for the labelling to 
be unique. 

Let a subclass of g E G be the set of elements (hgh- '  I h E H}, where H c G. Wigner 
(1968) has shown that, if all the subclasses so defined commute, G 3 H is a canonical 
sequence. The original application of Wigner's theorem was confined to the demonstra- 
tion that the sequences of symmetricgroups S ,  1 S , - ,  1. . . >  Sz are canonical sequences 
for all degrees n. We shall prove now that if H is an  invariant subgroup of G such 
that G / H  - C,, i.e. a cyclic group of prime order, the sequence G D  H is a canonical 
sequence and  since all the factors of a composition series of a solvable group are 
isomorphic to cyclic groups of prime order, we shall conclude that a solvable group 
always has a composition series that is canonical. Furthermore, we shall show that it 
is possible to construct canonical series for groups which are not solvable but have 
derived series ending with a simple group isomorphic to an  alternating group A,, of 
degree n > 5. 

Let y be an  irrep of H, a proper maximal normal subgroup of G. The stabiliser 
of y in G is given by 

S , ( Y ) = { g  E GI ~ ' ( h )  = y ( g h g - ' ) -  y ( h ) ) V h  E H. (1) 

According to this, 

H E S,( 7 )  G G 

and we can decompose G into cosets of S,( y ) .  

has I different conjugate irreps given by 
If t , ,  . . . , t ,  are the representatives of the cosets, with t ,  = 1 and I = IGi/lS,( y ) l ,  H 

Y k ( h )  = Y(tkhtk')* (3) 
Since 

h a  H 

and 

x " ( g h g - ' )  = X " ( h )  

we have 

(rl Y k )  = (rl Y )  for k =  1 , .  . . , 1. (4) 
In order to show that the restriction rH contains only the irreps Y k ,  we induce the 

representation y G  from y E irrep(H). 
From the Frobenius reciprocity theorem, and  assuming (r 1 y )  # 0, it is clear that 

r E irrep(G) occurs in this induced representation, and since the character of y G  can 
be given by 

X+j( h )  = f xY( t , h t ; ' )  = X Y ' (  h )  
i = I  , = I  

( 5 )  

we conclude that the y I  are the only irreps contained in rH. 
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Then we can write 

x"(h)=(r ly )  C xYi(h) 
I = I  

and from the orthogonality of the characters we have 
I 

1323 

(6) 

It then follows that 

(rl ~ ) ~ c  I S ~ ( Y ) I / I H I .  (8) 

Now, if the invariant subgroup H of G is such that lG/HI = p  ( a  prime number), 

In the first case, equation (8) yields (I- 1 y) = 1 and consequently 
from equation ( 2 )  we have that either S,( y )  = H or S,( y) = G. 

Therefore, x " ( g )  = 0 V g  E {G - H }  is a necessary condition for S,( y )  = H. But it is 
also a sufficient condition, because if S,( y) = G, there would be at least one conjugation 
class C of G contained in {G - H} such that xr( C) # 0. But if x " ( g )  = 0 V g  E {G - H } ,  
the equality holds in equation (8) and therefore (rl y)' = p in contradiction with our 
assumption that p is a prime number. 

In the second case, i.e. S,(y)=G, as G/H-C,, there are in G at least p one- 
dimensional representations A, of the form A,( rkH) = w n k ,  with w p  = 1 and where t is 
the representative of the coset of H in G. Since we know that the characters of the 
irrep r of G are different from zero for at least one class C c {G - H}, we have that 
there are in G at least p non-equivalent irreps r, related by 

r, ( tkh) = A , ( t k H ) r p ( r k h )  

= w n k r p (  t k h )  V h E H , O < n < p  and rp=F. ( 1 0 )  

From this, the orthogonality relations for the irreps of G can be written in the form 

1 lx"(h)l*+ w " k ~ x " ( t k h ) / 2 + .  . . = S,,/GI, 
h c H  h e H  

I f  we sum the p relations and  note that 

k n  - 
- P S k ,  

n = l  

we obtain 

This equation shows that r H  is an irrep of H and therefore ( r /  y) = 1. 
Since a solvable group always has a composition series such that its factor groups 

are cyclic subgroups of prime order we conclude that a composition series of a solvable 
group is always canonical. 
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Let us suppose now that G is not solvable. In this case it has a derived series 
GD G'D G"D. . . which ends with a non-Abelian simple group different from unity. 
If the tail group is isomorphic to a group A,, it is still possible to construct a canonical 
sequence for G. This can be simply done by refining the derived series (Kurosh 1960) 
until all the factor groups are simple Abelian groups. Next, the series can continue 
with the canonical sequence A, 2 A,-l 2 . .  A3 (Luan Dehuai and Wybourne 1981). 
On the other hand it can happen that, if G ,  = A,,, GI-, could be S ,  (since SL =A, , ) .  
In this case, it is also possible to construct the alternative canonical sequence 

G b G ' D . .  .DG/-I 2 S , - 1 2 . .  - 2  Sz. 

It is interesting to note that if H is not a normal subgroup of G, the sequence G 2 H 
is still a canonical series if the index of H in G satisfies IG: HI s 3 or / G :  H )  = 4 in the 
special case when 

where Z(G) is the group of the centre of G (Caride et a1 1987). 
These general results on canonical sequences can be deduced for the crystallographic 

point groups by examination of branching rule tables, like those given by Butler (1981). 

3. Labels and symmetry adapted irreps 

Let G be a finite group with at least one canonical sequence Go 2 G I  2 .  . - 2  G, 2 .  . . 
ending with an Abelian group. 

The aim of the present section is to construct a self-adjoint operator A as a linear 
combination of the principal idempotents in the algebra of the subgroups G, (Klein 
er a1 1970). This operator will allow us to adapt in symmetry the bases of a finite 
vector space such that the eigenvalues show the descent in symmetry of the irreps of 
the subgroups in the sequence. Due to the direct relation between principal idempotents 
and class sum operators (see equation (13) below), the operator Ll can be considered 
as a particular realisation of a complete set of commuting operators (csco I )  defined 
by Chen et a1 (1985). 

If we call RA and LA the right and left regular representations of the operator A, 
we shall show that a linear combination of R A  and LA* ( *  stands for complex 
conjugation) will give, by diagonalisation, the irreps of G which are symmetry adapted 
to the canonical sequence. 

be an irrep of a group G k  with conjugation classes C,. If Irl is the dimension 
of r, let us define an operator which is the expression of the principal idempotents of 
the algebra of Gk 

p l (Gk)=( / r l / lGk l )  x l (g)*g=( ir l / lGki )  1 x'(c,)*s(c,) (13) 

Let 

g t G i  I 

where 
I1 

( 8 )  = c r(g1l.A S(CO= c g 
k = l  g c c  

are the elements of the centre of the algebra of G k .  
From the orthogonality relations for the characters XI ( g ) ,  it is easy to prove that 

P' (Gk)P' (Gk) = 61 1 P' (Gk).  
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Moreover, we must note that, if g-’ = g-, P’ ( G k )  is a self-adjoint operator and, 
therefore, it is a projection operator. 

On the other hand, if the elements of G k  are not unitary operators, PI ( G k )  is not 
a self-adjoint operator, but since G k  is a finite group it is always possible to take 
T(g)L = T(g-’),  and in this case the representations of P” in the bases of the irreps of 
G ,  are self-adjoint matrices. Thus our results are still valid. 

Equation ( 1 3 )  can be inverted to give 

S( C,) = ITI-Ix’ (C , )P’  ( G k ) .  (14) 
I 

This equation shows that the representations of the operators S ( C , )  within the 

In order to construct a self-adjoint operator which labels the bases of the irreps of 
space IT?) are given by diagonal matrices with eigenvalues XI (C,)/ /T\.  

a finite group, we define 

where 

Then we see that N ( G , )  can be calculated using only the character table of the group 

Now, if we have a sequence G ,  2 G ,  2 . .  .2  G , ,  and b - 1 is an upper limit to the 
number of irreps of each subgroup G,  of the series, the labelling operator is defined by 

Gk. 

I 

A = 2 b ‘ - k N ( G k ) .  (16)  
k = O  

Since the operators N ( G k )  commute Vk, the eigenvalues A, of A have the form 
AJ = n o n l  . . . n , ,  and are integer numbers in base b. 

As an example of the utilisation of h let us take the canonical sequence C4” 2 C,( U” 1. 
From a table of characters of these groups we can write our labelling operator in the 
following form: 

.I = bN(C4, )  + N ( C J  

where 

~ ( ~ , , ) = a [ 2 0 e - ( 5 e + 2 C ; + c r ” ) ( e + C i ) ]  

N ( c ] )  = f ( 3 e - a ” ) .  

When we apply A to the irreducible space ( x y z ) ,  and b > 5, we obtain the diagonal 
matrix 

Therefore, the corresponding bases for the irreps r,, rJ of C4, 2 C, are 

I r d - 2 )  = x IWI) = J )r  ,r I )  = Z. 
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We shall now show how we can use the operator '1 to calculate the symmetry 
adapted irreps corresponding to a canonical sequence. For this purpose, let us call 
r ( g ) A A ,  the matrix elements of a symmetry adapted irrep of G to the canonical sequence 
G = Go 2 . .  .I G , ,  bearing in mind that G ,  is Abelian. 

In  order to simplify the notation, we omit the subindex no in r, since T ( g ) , , , #  0 
if and only if 

A = n o n l . .  . n, A ' =  n o n ; .  . . n ; .  

Further, as T ( g )  is supposed to be symmetry adapted to the sequence, we must have 

for i within the interval (0, 1 )  and where 

p = n,n ,+ ,  . . . n, p ' =  n , n : + ,  . . . n ; .  

From the definition of A, the ijth matrix element of its left regular representation 

LA, =I b'-k c { n k ~ x n L ( l ) ~ / ~ G k ~ }  X n h ( g ) * ~ g , . g g , .  ( 1 8 )  

From equations ( 1 7 )  and (18) and  the orthogonality of the irreps of a finite group, 

is given by 

" h  g c G h  

we have 

L A , r ( g , ) ? A . =  Ar(gl)?A' (19) 
J 

which shows that the element T ( g , ) f A .  ( j  = 1 , .  . . , IG/) is the j t h  component of the 
eigenvector of the left regular representation of A. 

If we now write the matrix elements of the right regular representation, we have 

which applied to the elements of T ( g , )  results in 

'A,jr(g/).kA = A'r(gt)AA'. (21) 
I 

Therefore, from equations ( 1 9 )  and ( 2 1 )  and taking into account that LA and R A  
commute, we have that the normalised eigenvectors of the matrix 

( 2 2 )  Y'L il * 6 1 + 
are given, u p  to a phase factor, by 

where the eigenvalue p is an  integer number of the form 

p = A A ' =  non ,  . . . n,non; . . . n : .  

Our Y matrix can also be interpreted as a realisation of a particular linear combina- 
tion of the csco I1 of Chen er al. The advantage of Y is obvious if we want to calculate 
the symmetry adapted irreps corresponding to a canonical series. Furthermore, it 
avoids the introduction of the intrinsic group, anti-isomorphic to  G ,  generated by a 
right shift. Instead, we have the right regular representation which is isomorphic to G .  
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M = (2J2)- ’  

1 1 -1 -1 0 -42  J 2  0 
1 1 1 1 - J 2  0 0 -42  
1 1 -1 -1 0 J 2  4 2  0 
1 -1 -1 1 J 2  O O -J2 
1 -1 1 -1 0 4 2  -42  0 
1 -1 -1 1 - J 2  0 0 J 2  

4. Results and discussion 

Let G be a group with a series 

Go 2 GI 2 . .  . 2  G, 

and let / A ,  U) be the functions which are linear combinations of the basis vectors of a 
vector space V such that the action of the operator A defined in 0 3 is given by 

v )  = A / A ,  v )  (24) 

where v numbers the linear combinations which have the same value of A = nonl . . . n, .  
In order to obtain a solytion for v, let us calculate the matrix element of an operator 

fi, which is such that [g,  H , ] -  = 0, Vg E G, 
I 

(A,  vlfill~!, v ’ ) = ( n , n , .  . . n,, v / f i , i , inbnl .  . . n ; ,  v‘) n a,,,,,. 
k = r  

From this equation we see that, if the eigenvalues of the term fi0 are all different 
within each subset / A ,  v )  for fixed A, we can label uniquely the bases of Go which are 
symmetry adapted to the given sequence. 

Krame: and  Moshinsky (1966) have shown that this is the case of the invariant 
operator T of 0: obtained from the spherical harmonics Y4,,, within the vector spaces 
V, = { I  jm)} for fixed j .  

Now we shall show that we can add to the A operator another term such that we 
will have a new self-adjoint operator with real eigenvalues consisting of an  integer 
part (which is the old eigenvalue A of A )  and a non-integer part corresponding to the 
eigenvalue of the operator f 

Following Fox et a1 (1977) we write 

f = [ j ( 2 J + 1 ) ] ” 2 ? o + t  (25) 

f o  = [ 112/3(23 -3 )9 ] ”2 [ -354+~ ’+  ~(J:+J:+J:)] 

with 
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where the J, ( i  = 1,2 ,3)  are the components of the angular momentum J and 

( A ) ,  = A(A + 1) . . . ( A  + k - 1) 

Then we define the new operator by 

where the G, are subgroupSAof 0 or 0*, i is the inversion operator and, from equation 
(25), the eigenvalues I of T are in the interval (0,;). Since f commutes with every 
element g E G it also commutes with A and, therefore, the eigenvalues of are given 

(27) 

where the sign +(-) denotes that the subspace is even (odd) under the inversion 
operation. 

It is important to note that the eigenvalues of fi solve the problem of clustering 
observed by Fox et a1 in the eigenvalue spectrum of the operator f = T4A, for j > 20. 

Clearly, the considerations about T4Al can be extended to the operator TbA, which 
has the same type of tridiagonal matrix representation in the same subspace. This 
allows us to conclude that the bases of the operators A +  LYT~A, and A +  CYT~AI + PT6AI 
( a  and P arbitrary constants) are more convenient functions to study problems referring 
to localised d and f electrons. 

Finally, we want to point out some considerations on finite groups with canonical 
series. 

( i )  Apart from A5 and &, there exist among the groups of order less than 1000 
only three simple groups (Suzuki 1982), of which it is not known if they have canonical 
sequences. 

by 
u = * ( n o n l  . . . nl+ I )  

( i i )  Any group of odd order is solvable (Suzuki 1986). 
(iii) The class of solvable groups is closed with respect to the formation of sub- 

groups, images and extensions of its members (Robinson 1982). 
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